
Locality Aware Scheduling of Sparse
Computations for Energy and Performance

Efficiencies

Michael Frasca

Kamesh Madduri

Padma Raghavan

Department of Computer Science & Engineering

The Pennsylvania State University

March 1, 2013

2

Exploiting parallelism for large-scale irregular applications

requires efficient use of a complex memory hierarchy.

We develop dynamic workload strategies that map the

demands of parallel graph algorithms onto shared

compute and memory resources, while achieving

improved power and performance efficiencies

ABSTRACT

Outline

Background
 Non-Uniform Memory Access (NUMA)

 Betweenness Centrality (BC)

NUMA-Aware Dynamic Strategies
 Adaptive Data Layout (ADL)

 NUMA-Aware Workload Queues (NWQ)

Power & Performance Results
 20 large graph inputs

 1-32 cores/threads

 Detailed working-set analysis

Conclusions

3

Background | NUMA Cache Hierarchy

Scalable cache design
 Local caches with low-latency

 Shared caches with higher-capacity

 Shared cache latency depends on distance to core

 Multi-socket systems connected via point-to-point interconnect

Coherence policy
 Multiple copies of

shared data

 Writing to data invalidates
non-owned copies

 Applies to caches across
multiple sockets

4

Background | Graph Mining

Graph analysis
 Inherently unstructured data

 Irregular access patterns,
unknown until runtime

 Data partitioning is hard

Parallelism
 Shared memory, dynamic partitioning

 Light-weight threading

 Efficient synchronization

Betweenness Centrality
 Measure of a node’s importance

in a graph

5

www.cise.ufl.edu

Background | Betweenness Centrality

Count of all shortest paths s ⇢ t

Count of all shortest paths s ⇢ t that contain v

All-pairs shortest path
 One BFS per node + updates to per-node metadata

Lock-free implementation
 Level-synchronous design

 Dynamic workload balancing

 Madduri et al. [IPDPS 2009]

6

Parallel BFS | Memory Behavior

Dynamic thread-vertex assignment at each level

 Outgoing edge => update to frontier node

 Dictates reuse across tree depths

 Can generate unnecessary sharing on the frontier

7

BOUNDARY

FRONTIER

READ

WRITE

Parallel BFS | Memory Behavior

8

Adjacency Matrix Representation

Parallel BFS | Memory Behavior

9

Workload distribution of a front

NUMA-AWARE TECHNIQUES

10

NUMA-Aware | Adaptive Data Layout

We assume graphs have a random ordering
 Poor spatial data locality

 High amount of false sharing

Dynamic graph reordering
 The first BFS traverses the random graph

 Order of discovery is used to permute the graph

 Improved locality for remaining BFS traversals

11

Permutation Sort

NUMA-Aware | Adaptive Data Layout

12

NUMA-Aware | Adaptive Data Layout

13

NUMA-Aware | Dynamic Work Queues

14

NUMA-Aware | Dynamic Work Queues

15

Applicable to iterative algorithms that dynamically generate work

BC: Boundary/Frontier represented as per-thread work queues

MEMORY

COMPUTE

NUMA-Aware | Dynamic Work Queues

Each Core/Thread has its own work queue

When a thread completes, it aids other threads

Work queues traversed in order of NUMA-distance

16

C0 C1 C2 C3

L2 Cache L2 Cache

L3 Cache

MEMORY

COMPUTE

NUMA-Aware | Dynamic Work Queues

17

C0 C1 C2 C3

L2 Cache L2 Cache

L3 Cache

T0: { C0, C1, C2, C3 }

T1: { C1, C0, C3, C2 }

T2: { C2, C3, C0, C1 }

T3: { C3, C2, C1, C0 }

Work Queue Traversal

NUMA-Aware | Dynamic Work Queues

Improved per-thread reuse at frontier

Reduced frontier sharing

Shared frontier likely between neighboring threads

18

EXPERIMENTAL ANALYSIS

19

Experimental | Cache Architecture

4 x Intel Xeon E7-8837
(Westmere)

8 Cores per socket,
32 cores total

Direct QPI
Inter-Processor
Communication

4 memory channels
per socket

20

qdpma.com

Experimental | Inputs

20 large sparse graphs
 Road networks

 Finite element meshes

 Web crawls

|V| ϵ [11.5, 118.1] million
|E| ϵ [12.4, 1930.3] million

Scaling from 1 to 32 cores
 Measured time, power, cache

21

Performance Results | Per Input Speedup

22

Performance Results | Average Workload Speedup

23

Speedup BC ADL ADL+NWQ

8 Threads 6.8x 16.0x 18.4x

32 Threads 16.9x 20.2x 32.9x

Energy Results | Per Input Savings

Mean energy reduction savings
 ADL: 17.9%

 ADL+NWQ: 52.4%

Reasonably correlated with speedup

24

speedup

Energy Results | Understating Consumption

Static Energy
 Power consumed by system at idle

Dynamic Energy
 Increased power consumed during utilization

 Arithmetic, logic, branch units, cache and DRAM

Efficient code uses less of both
 Reduced runtime => less static power consumed

 Fewer cache misses, branch miss-predictions, pipeline
stalls => less dynamic power consumed

25

Improved dynamic energy
requirements

Better performance creates
energy savings at scale

Energy Results | Scaling Trends

26

Dynamic energy increases
due to parallel overheads

Energy Results | Scaling Trends

Improved dynamic energy
requirements

Better performance creates
energy savings at scale

27

Working Set Analysis

28

Considerable per-thread

overlap

Inefficient use of memory

bandwidth across sockets

High costs associated

with coherence traffic

NUMA-Aware scheduling
reduces redundancy

More efficient use of cache
space

Reduced cache
invalidations

Working Set Analysis | Cache Impact

29

Conclusions

Memory issues have great impact as we scale

algorithms and architectures

We believe dynamic runtime environments are

key in exploiting workload specific variability

30

Conclusions | Future Directions

NUMA-Aware Workload Scheduling

Adapting scheduler for other irregular algorithms

Incorporating other forms of system heterogeneity

Detailed analysis of cache behavior via simulation

 Location of shared frontier sets within the NUMA hierarchy

 Impact on load at functional units (e.g. reordering, branches)

NUMA-Aware graph data structures

Appropriate for distributed memory?

thank you

31

