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Exploiting parallelism for large-scale irregular applications 

requires efficient use of a complex memory hierarchy.

We develop dynamic workload strategies that map the 

demands of parallel graph algorithms onto shared 

compute and memory resources, while achieving 

improved power and performance efficiencies

ABSTRACT



Outline

Background
 Non-Uniform Memory Access (NUMA)

 Betweenness Centrality (BC)

NUMA-Aware Dynamic Strategies
 Adaptive Data Layout (ADL)

 NUMA-Aware Workload Queues (NWQ)

Power & Performance Results
 20 large graph inputs

 1-32 cores/threads

 Detailed working-set analysis

Conclusions
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Background  | NUMA Cache Hierarchy

Scalable cache design
 Local caches with low-latency

 Shared caches with higher-capacity

 Shared cache latency depends on distance to core

 Multi-socket systems connected via point-to-point interconnect

Coherence policy
 Multiple copies of 

shared data

 Writing to data invalidates 
non-owned copies

 Applies to caches across 
multiple sockets
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Background  | Graph Mining

Graph analysis
 Inherently unstructured data

 Irregular access patterns,
unknown until runtime

 Data partitioning is hard

Parallelism
 Shared memory, dynamic partitioning

 Light-weight threading

 Efficient synchronization

Betweenness Centrality
 Measure of a node’s importance

in a graph
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Background  | Betweenness Centrality

Count of all shortest paths s ⇢ t

Count of all shortest paths s ⇢ t that contain v

All-pairs shortest path
 One BFS per node + updates to per-node metadata

Lock-free implementation
 Level-synchronous design

 Dynamic workload balancing

 Madduri et al. [IPDPS 2009]
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Parallel BFS  | Memory Behavior

Dynamic thread-vertex assignment at each level

 Outgoing edge => update to frontier node

 Dictates reuse across tree depths

 Can generate unnecessary sharing on the frontier
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Parallel BFS  | Memory Behavior
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Adjacency Matrix Representation



Parallel BFS  | Memory Behavior
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Workload distribution of a front



NUMA-AWARE TECHNIQUES
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NUMA-Aware  | Adaptive Data Layout

We assume graphs have a random ordering
 Poor spatial data locality

 High amount of false sharing

Dynamic graph reordering
 The first BFS traverses the random graph

 Order of discovery is used to permute the graph

 Improved locality for remaining BFS traversals
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Permutation Sort



NUMA-Aware  | Adaptive Data Layout
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NUMA-Aware  | Adaptive Data Layout
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NUMA-Aware  | Dynamic Work Queues
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NUMA-Aware  | Dynamic Work Queues
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Applicable to iterative algorithms that dynamically generate work

BC: Boundary/Frontier represented as per-thread work queues



MEMORY

COMPUTE

NUMA-Aware  | Dynamic Work Queues

Each Core/Thread has its own work queue

When a thread completes, it aids other threads

Work queues traversed in order of NUMA-distance
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C0 C1 C2 C3

L2 Cache L2 Cache

L3 Cache
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NUMA-Aware  | Dynamic Work Queues
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C0 C1 C2 C3

L2 Cache L2 Cache

L3 Cache

T0:  { C0, C1, C2, C3 }

T1:  { C1, C0, C3, C2 }

T2:  { C2, C3, C0, C1 }

T3:  { C3, C2, C1, C0 }

Work Queue Traversal



NUMA-Aware  | Dynamic Work Queues

Improved per-thread reuse at frontier

Reduced frontier sharing

Shared frontier likely between neighboring threads
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EXPERIMENTAL ANALYSIS
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Experimental  | Cache Architecture

4 x Intel Xeon E7-8837
(Westmere)

8 Cores per socket,
32 cores total

Direct QPI
Inter-Processor 
Communication

4 memory channels 
per socket
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Experimental  | Inputs

20 large sparse graphs
 Road networks

 Finite element meshes

 Web crawls

|V| ϵ [ 11.5, 118.1 ] million
|E| ϵ [ 12.4, 1930.3 ] million

Scaling from 1 to 32 cores
 Measured time, power, cache
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Performance Results  | Per Input Speedup
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Performance Results  | Average Workload Speedup
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Speedup BC ADL ADL+NWQ

8 Threads 6.8x 16.0x 18.4x

32 Threads 16.9x 20.2x 32.9x



Energy Results  | Per Input Savings

Mean energy reduction savings
 ADL: 17.9%

 ADL+NWQ: 52.4%

Reasonably correlated with speedup
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Energy Results  | Understating Consumption

Static Energy
 Power consumed by system at idle

Dynamic Energy
 Increased power consumed during utilization

 Arithmetic, logic, branch units, cache and DRAM

Efficient code uses less of both
 Reduced runtime => less static power consumed

 Fewer cache misses, branch miss-predictions, pipeline 
stalls => less dynamic power consumed
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Improved dynamic energy 
requirements

Better performance creates 
energy savings at scale

Energy Results  | Scaling Trends
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Dynamic energy increases 
due to parallel overheads



Energy Results  | Scaling Trends

Improved dynamic energy 
requirements

Better performance creates 
energy savings at scale
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Working Set Analysis

28

Considerable per-thread 

overlap

Inefficient use of memory 

bandwidth across sockets

High costs associated 

with coherence traffic

NUMA-Aware scheduling 
reduces redundancy

More efficient use of cache 
space

Reduced cache 
invalidations



Working Set Analysis  | Cache Impact
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Conclusions

Memory issues have great impact as we scale 

algorithms and architectures

We believe dynamic runtime environments are 

key in exploiting workload specific variability
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Conclusions  | Future Directions

NUMA-Aware Workload Scheduling

Adapting scheduler for other irregular algorithms

Incorporating other forms of system heterogeneity

Detailed analysis of cache behavior via simulation

 Location of shared frontier sets within the NUMA hierarchy

 Impact on load at functional units (e.g. reordering, branches)

NUMA-Aware graph data structures

Appropriate for distributed memory?

thank you
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