Locality Aware Scheduling of Sparse
Computations for Energy and Performance
Efficiencies

Michael Frasca
Kamesh Madduri
Padma Raghavan

SIAM Conference
Computational Science

| -
v

February 25March 1, 2013
The Westin Bostoo Waterfront
Boston, Massachusetts, USA

ue

Department of Computer Science & Engineering
The Pennsylvania State University

bupauibuz p

March 1, 2013

ABSTRACT

Exploiting parallelism for large-scale irregular applications

requires efficient use of a complex memory hierarchy.

We develop dynamic workload strategies that map the
demands of parallel graph algorithms onto shared
compute and memory resources, while achieving

improved power and performance efficiencies

I Outline

I Background
= Non-Uniform Memory Access (NUMA)
= Betweenness Centrality (BC)

I NUMA-Aware Dynamic Strategies
= Adaptive Data Layout (ADL)
= NUMA-Aware Workload Queues (NWQ)

I Power & Performance Results
= 20 large graph inputs
= 1-32 cores/threads
= Detailed working-set analysis

I Conclusions

I Background | NUMA Cache Hierarchy

I Scalable cache design
= |ocal caches with low-latency

= Shared caches with higher-capacity

= Shared cache latency depends on distance to core

= Multi-socket systems connected via point-to-point interconnect

I Coherence policy

= Multiple copies of
shared data

= Writing to data invalidates
non-owned copies

= Applies to caches across
multiple sockets

CO |L1| 2| (7)
c1bizd 12 L2
| L3 L
c2 |2 L2
c3 |11 12 N"—2 12

12

L1| C4
L1| G5
L1| Cé

L1

Cc7

Socket 1

\ Socket 2

Socket 3

1/0

|

I Background | Graph Mining

Hollinger/g7jac020

I Graph analysis
" |nherently unstructured data

" |rregular access patterns,
unknown until runtime

= Data partitioning is hard

I Parallelism
= Shared memory, dynamic partitioning
= Light-weight threading
= Efficient synchronization

I Betweenness Centrality

= Measure of a node’s importance
in a graph

I Background | Betweenness Centrality

I Count of all shortest paths s ~» t
I Count of all shortest paths s -» t that contain v

BC(v) = Z 75t (V)
¢

I All-pairs shortest path
= One BFS per node + updates to per-node metadata

I Lock-free implementation
= Level-synchronous design
= Dynamic workload balancing
= Madduri et al.

I Parallel BFS | Memory Behavior

BOUNDARY

FRONTIER

I Dynamic thread-vertex assignment at each level
= Qutgoing edge => update to frontier node
= Dictates reuse across tree depths
= Can generate unnecessary sharing on the frontier

I Parallel BFS | Memory Behavior

Adjacency Matrix Representation

Parallel BFS | Memory Behavior

Boundary Vertices

Frontier Vertices

® 71 @ T2 ©® T3 @ T4

Workload distribution of a front

NUMA-AWARE TECHNIQUES

I NUMA-Aware | Adaptive Data Layout

I We assume graphs have a random ordering
" Poor spatial data locality
= High amount of false sharing

I Dynamic graph reordering
" The first BFS traverses the random graph
* Order of discovery is used to permute the graph
" Improved locality for remaining BFS traversals

Permutation Sort

(depth, time discovered)

11

Serial ADL
5
. 8 . A

& g]‘
R PN
N A% 3
e g3
L N
e X
S~y D"
"

wh)

I NUMA-Aware | Adaptive Data Layout

Parallel ADL

(depth, time discovered)

12

I NUMA-Aware | Adaptive Data Layout

Serial ADL

(depth, thread owner,

Thread-aware Parallel ADL

time discovered)

13

I NUMA-Aware | Dynamic Work Queues

I NUMA-Aware | Dynamic Work Queues

Algorithm 2 NUMA-Aware Work Queue: NUMA topology directs initial workload as-
signment and stealing pattern

1: procedure PROCESSQUEUE(Q, Qnext)

2: id < Thread ID > ID for the current thread
3: for level = 0 to Q.size()-1 do > For each work queue
4 gia < NUMA Neighbor(id, level) > Get next queue pointer
5: while task < Q|gq].next() do > For each remaining task
6 taskspew < Process(task) > Process task and collect new tasks
7 Qnext[id].insert(task spew) > Add new tasks to thread local queue
8 end while

9: end for

10: return Qnext > Return generated tasks for the next iteration

11: end procedure

I Applicable to iterative algorithms that dynamically generate work

I BC: Boundary/Frontier represented as per-thread work queues

15

I NUMA-Aware | Dynamic Work Queues

MEMORY

L2 Cache L2 Cache

COMPUTE

I Each Core/Thread has its own work queue
I When a thread completes, it aids other threads

I Work queues traversed in order of NUMA-distance

16

I NUMA-Aware | Dynamic Work Queues

MEMORY

L2 Cache L2 Cache

COMPUTE

Work Queue Traversal

I TO: {C0O,C1,C2,C3} I T2: {C7,C3,C0,C1}
I T1:. {C1,C0,C3,C7 } I T3: {C3,C2,C1,CO}

17

I NUMA-Aware | Dynamic Work Queues

Boundary

NUMA-Aware Work Queues

OpenMP Dynamlc Schedule

Frontier Frontler

® 71 ® T2 & T3 @ T4

I Improved per-thread reuse at frontier

I Reduced frontier sharing
I Shared frontier likely between neighboring threads

18

EXPERIMENTAL ANALYSIS

19

I Experimental | Cache Architecture

I 4 xIntel Xeon E7-8837

Westmere .
() I I I I QPl QPI QPI QPI QPI QPI QPl QPI
C4 C5
I I I I g C3 C6 C3 Cé
I 8 Cores per socket, T = B = —
32 cores total il E; - = Eg
I I I I < MC MC MC MC
H II g QPl apPi * QPI QPI QPI QPI 1 QPl QPI
I Direct QPI o cs
Inter-Processor ||“ 2 = cs c —
. . c2 c7 c2 Cc7
Communication ““ = e L c8
T 1 - - -

I 4 memory channels
per socket

20

I Experimental | Inputs

I 20 large sparse graphs
= Road networks
" Finite element meshes
= Web crawls

I |V]e[11.5,118.1] million
|E| €[12.4,1930.3] million

I Scaling from 1 to 32 cores
= Measured time, power, cache

TBC(I)
Speedup(opt, p) = ———
() lozvt(p)

DIMACS
Name V| |E| Time / Source
D1: germany_osm 11.5 12.4 5.7
D2: asia_osm 12.0 12.7 6.0
D3: hugetrace-00010 12.1 18.1 6.3
D4: road_central 14.1 16.9 6.7
D5: hugetrace-00020 16.0 24.0 8.5
D6: nlpkkt200 16.2 216.0 26.9
D7: rgg_n_2_24 s0 16.8 132.6 15.4
D8: delaunay_n24 16.8 50.3 10.7
D9: hugebubbles-00000 18.3 27.5 9.7
D10: hugebubbles-00010 19.5 29.2 10.4
D11: hugebubbles-00020 21.2 31.8 11.4
D12: road_usa 23.9 28.9 11.7
D13: nlpkkt240 28.0 373.2 49.4
D14: europe_osm 50.9 54.1 27.6
LAW
Name \4d |E| Tume / Source
L1: uk-2002 18.5 292.2 7.9
L2: arabic-2005 22.7 631.2 13.6
L3: uk-2005 39.5 921.3 19.5
L4: it-2004 41.3 1135.7 29.8
L5: sk-2005 50.6 1930.3 43.6
L6: webbase-2001 118.1 | 992.8 36.7

Energy Reduction(opt, p) =

EBC (p) - Eopt (p)

Egc(p)

21

I Performance Results | Per Input Speedup

N avsl olative SO acel] M
Speedup relative to Serial Baseline, Topi(P)
56 I I 1 T | I 1 T T | l
Il sc [ADL [ADL+NWQ | |
W |
& 40 |
Q |
o 32 t
g. !
3 24 - [
O \
218 |
(D |
111 I
0 : ;
D1 D2 D3 D4 D6 DT Dg D10 D11 D12 D13 D14 L1 L2 L3 L4 L5 L6
56 T L T 1
[-Bc AL -ADL+NWQ] [
w |
o |
o 40 !
O |
o 32 - i
@ [
© 16 ‘
Q. !
w [
Il ’
0 1 I
D1 Dz D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 L1 L2 L3 L4 L5 L6

DIMACS Graphs LAW Graphs

22

I Performance Results | Average Workload Speedup

Performance Scalability

|| wffem BC
weii= ADL
| m=pu= ADL+NWQ

w
N

N
FS

-
@ (=]
T T

Mean Speedup
F <N

Cores

Speedup ADL+NWQ

8 Threads
32 Threads

23

Energy Results | Per Input Savings

Energy Savmgs 32 Cores

-~
o

. 1 I
[ADL
[ADL+NWQ

N w £ 9] (o))
o o o o o

Relative Energy Reduction (%)

o

DIMACS Graphs

I Mean energy reduction savings
= ADL:17.9%
= ADL+NWQ: 52.4%

1.0 I

D1 D2 D3 D4 D5 D6 D7 D8 D8 D10 D11 D12 D13 D14 L1 L2 L3 L4 LS L6

._—,

Il

LAW Graphs

o N o

RN NN N

Di D2 03 D4 D5 D6 D7 D8 DS DD DU D2 D3 DM 1LY 12 13 4 IS IS

I Reasonably correlated with speedup speedup

24

I Energy Results | Understating Consumption

I Static Energy
= Power consumed by system at idle

I Dynamic Energy
" |ncreased power consumed during utilization
= Arithmetic, logic, branch units, cache and DRAM

I Efficient code uses less of both
= Reduced runtime => less static power consumed

= Fewer cache misses, branch miss-predictions, pipeline
stalls => less dynamic power consumed

25

I Energy Results | Scaling Trends

Dynamic Energy Consumption

07

o
o

o
S

o
w

Mean Energy (mJ) per Vertex
(=]
N

; . .
== 5C

0.6/ weilifes ADL : 1
iADL#NWQ

1 | 1 1
1 2 4 8 16 24 32
Cores

Peak Dynamic Power: 32 Cores

360
-
340} E -
PR L
320 \
& + : —
1] r
= 300 —_
280 T
[
1 s median
260 = = =mean |
. “ I
BC ADL ADL+NWQ

Dynamic energy increases
due to parallel overheads

Improved dynamic energy
requirements

26

I Energy Results | Scaling Trends

S
b

Mean Energy (mJ) per Vertex
o
w

0.1

Watts

Dynamic Energy Consumption

e
&

280

1
4

8
Cores

1 |
16 24 32

Peak Dynamic Power: 32 Cores

=

R

+

BC

ADL+NWQ

Mean Energy (mJ) per Vertex

25
20~

15!

Total Energy Consumption

e BC

I
= ADLENWQ

i ADL

Improved dynamic energy
requirements

Better performance creates

energy savings at scale

27

I Working Set Analysis

|Thread Working Set| / |V|
© ©o o o
4] = (=3} w =

o

I
I \Vrite
[Read
______________________________________ @= Optimal [

I Considerable per-thread
overlap

I Inefficient use of memory
bandwidth across sockets

B High costs associated
with coherence traffic

1 T
, ~
NUMA-Aware scheduling — .o N
reduces redundancy &
D 06
o 0 c
More efficient use of cache £
g 0.4
space 5
Reduced cache 202
. L =
invalidations 0

.. @= Optimal |

|
I \Vrite
[Read

28

I Working Set Analysis | Cache Impact

Cache Performance: 32 Cores

100

Mean Hit Rate (%)
=) 3 8

no
o
I

| |
BC ADL ADL+NWQ

@ 1 i | 2 13wl Remote L2 wifgen TLB

29

I Conclusions

I Memory issues have great impact as we scale

algorithms and architectures

I We believe dynamic runtime environments are
key in exploiting workload specific variability

30

I Conclusions | Future Directions

NUMA-Aware Workload Scheduling

Adapting scheduler for other irregular algorithms
Incorporating other forms of system heterogeneity

Detailed analysis of cache behavior via simulation
= |ocation of shared frontier sets within the NUMA hierarchy

" |Impact on load at functional units (e.g. reordering, branches)
NUMA-Aware graph data structures

Appropriate for distributed memory?

31

